记录黑客技术中优秀的内容, 传播黑客文化,分享黑客技术精华

看见到洞见之引子(一)机器学习算法

阅读: 16《看见到洞见》系列文章汇聚、分享的是绿盟科技创新中心对于数据分析在安全领域应用的技战术思考与经验,力求由浅入深层次递进,实战到方法论双线剖析。此文为系列文章之引子第一篇,深入浅出的对常用的数据分析和机器学习的算法进行介绍。文章目录什么是机器学习?机器学习的常用算法人工神经网络(Artificial Neural Network, ANN)决策树算法支持向量机小结什么是机器学习?机器学习(Machine Learning, ML)是人工智能的一个分支,是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。同时,机器学习是一个涉及到多个领域的交叉学科,其涵盖范围包括了概率论、统计学、逼近论、凸分析、计算复杂性理论等学科。目前,机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征

看见到洞见之引子(二)机器学习算法简介

阅读: 1《看见到洞见》系列文章汇聚、分享的是绿盟科技创新中心对于数据分析在安全领域应用的技战术思考与经验,力求由浅入深层次递进,实战到方法论双线剖析。此文为系列文章之引子第二篇,深入浅出的对常用的数据分析和机器学习的算法进行介绍。在上一篇中,我们介绍了几种常用的监督学习方法。在本篇中,我们介绍无监督学习方法中的聚类方法。聚类是在高维度的未标注数据中寻找特征的一系列方法。其思想是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能的大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。由于聚类算法不需要有标签的数据,所以聚类算法在很多领域得到了广泛的应用,如模式识别、数据分析、图像处理、市场研究、客户分割、We

公告

关注公众号hackdig,学习最新黑客技术

推广

工具

标签云